
Octagon Abstract Interpreter
Jérôme Boillot !

EPFL

Orégane Desrentes !

EPFL

Siang-Yun Lee !

EPFL

Dewmini Sudara Marakkalage !

EPFL

Abstract
We present an implementation of a static analyser for C language using abstract interpretation
with octagons [5] as the abstract domain. For simplicity, we only consider C functions with integer
variables and maintain the program state at each execution point as a set of octagonal constrains on
program variables. An octagonal constrains is a constraint of the form ±x ± y ≤ c where x and y

represent a pair of variables and c is an arbitrary constant. To transform the abstract state at one
execution point to that at the next execution point, we apply abstract transfer functions. These
include functions for handling assignments, conditional statements, control-flow merge, and loops.
Using abstract interpretation with octagon abstract domain, we show that we can verify simple
invariants (both relational and non-relational) that are otherwise not possible with simpler abstract
domains such as intervals.

In this report, we first review the background knowledge about abstract interpretation and the
octagon domain and describe some implementation details in our system. Then, the analysis flow is
demonstrated with some examples, and the complexity of several closure algorithms is examined
with experimental results. Finally, future work that we have not done is discussed before we conclude
the report.

2012 ACM Subject Classification Software and its engineering → Software verification and validation

Keywords and phrases formal verification, abstract interpretation, octagon domain

1 Introduction

1.1 Software Verification

Software is computer programs usually written by human engineers to perform some specific
tasks. Because humans often make mistakes, it is important to verify that human-written
programs really do what they are supposed to do. The specifications of software are the
expected behaviors of a program defined by the users, which can be written in a formal way
by defining some input-output relationship to be formally verified. As the scale of modern
software grows, it becomes inevitable to rely on computers in software verification.

To verify software specifications, it is often easier to analyse program states, which are the
values of the program variables hold at certain positions of execution (e.g., certain lines of the
code). However, the number of possible program states may be too large to be enumerated
and analysed one by one. Hence, they have to be abstracted into a less detailed domain so
that several states can be represented together in a more compact way to ease the effort
needed in verification.

mailto:jerome.boillot@epfl.ch
mailto:oregane.desrentes@epfl.ch
mailto:siang-yun.lee@epfl.ch
mailto:dewmini.marakkalage@epfl.ch

2 Implementation of an Octagon Abstract Interpreter for C Programs

1.2 Abstract Interpretation
Abstract interpretation is a technique to transform concrete program states into an abstraction,
analysing them in the abstract domain, and interpret the conclusions back in the concrete
domain. Abstraction is, in its nature, approximation, which means errors are inevitable. An
important requirement for an abstract domain is that it should never produce false positive
results, whereas some false negatives are acceptable. In other words, if the given program
contains a bug, it must be caught; but when an abstract analyser reports a buggy behavior
of the program, it may turn out to never happen in real executions.

Researchers have proposed several different abstract domains of different levels of precision.
Like every computer science problem, there is a trade-off between precision of abstract
domains and efficiency of their operations. For example, one of the simplest abstract domain
is the interval domain [4], where a program variable is abstracted from taking a certain
value into a range of possible values. Abstract operations in this domain is more efficient
than in more complex domains, but due to its simplicity, an analyser in this domain may
often fail to conclude anything useful. The interval domain is not relational, i.e., it does
not consider relationships between program variables. Nevertheless, relationships between
program variables are often the focus or even the target of software verification. Hence,
a relational abstract domain is in need. To maintain efficiency, it should also not be too
complicated.

1.3 The Octagon Domain
The Octagon domain [5] is an abstract domain describing program states with octagonal
constraints, which are constraints on two program variables Vi, Vj of the form biVi + bjVj ≤ c,
where bi, bj ∈ {0, +1,−1} and c is a constant. The conjunction of a set of octagonal constraints
forms an octagon, which is a set of concrete program states satisfying the constraints.

To deal with the positive and negative signs more easily, each program variable Vi is split
into a positive form V ′

i+ and a negative form V ′
i− during analysis. This way, all possible

octagonal constraints can be written as a potential constraint of the form V ′
i − V ′

j ≤ c.
An intuitive way to represent a set of potential constraints is the potential graph. In this

graph, a node represents an extended variable (a program variable in its positive or negative
form) and an edge pointing from node i to node j with a weight c represents a potential
constraint V ′

j − V ′
i ≤ c. In practice, to manipulate potential graphs easily, they are stored as

adjacency matrices, called difference bound matrices (DBMs). An entry in a DBM m at row
i, column j, mij = c, encodes a potential constraint V ′

j − V ′
i ≤ c.

A DBM m is said to be coherent if the constraints it encodes agree with the fact that
V ′

i+ and V ′
i− relate to the same program variable, or more precisely, if

∀i, j, mi+,j+ = mj−,i− and mi+,j− = mj+,i− and
mi−,j+ = mj−,i+ and mi−,j− = mj+,i+

In the following of this report, all DBMs are assumed to be coherent unless explicitly
specified. The prime symbol distinguishing an extended variable from a program variable is
also neglected in the following.

1.4 Normalization of DBMs
As described earlier, the abstract representation we choose to represent octagons is DBM,
and there can be different DBMs representing the same octagon. Such situations can make

J. Boillot, O. Desrentes, S.-Y. Lee and D. S. Marakkalage 3

the abstract interpreter assume constraints on variables that are not as tight as the best
possible constraints and fail to verify certain conditions that are in fact true.

For example, consider the two DBMs (where V ′
2i−1 = V ′

i+ and V ′
2i = V ′

i−):

m1 =

V ′
1 V ′

2 V ′
3 V ′

4
V ′

1 0 ∞ ∞ ∞
V ′

2 4 0 3 ∞
V ′

3 1 ∞ 0 ∞
V ′

4 ∞ ∞ ∞ 0

and m2 =

V ′
1 V ′

2 V ′
3 V ′

4
V ′

1 0 ∞ ∞ ∞
V ′

2 10 0 3 ∞
V ′

3 1 ∞ 0 ∞
V ′

4 ∞ ∞ ∞ 0

.

They represent the same octagon, but the explicitly stated constraint V ′
1 − V ′

2 = 2V1 ≤ 10
in m2 is not as tight as the respective constraint in m1.Nevertheless, there are two other
constraints, namely V ′

1 − V ′
3 ≤ 1 and V ′

3 − V ′
2 ≤ 3, that imply V ′

1 − V ′
2 = 2V1 ≤ 4. If the

abstract interpreter is asked to verify that there are no division by zero error when performing
a division such as 1/(3− V1), it might not be able to directly do it without any additional
processing to figure out the implicit constraints provided that it had the m2 as the abstract
representation instead of m1.

Thus it is beneficial to always make implicit constraints explicit, and this process is
called normalization. Intuitively, given a DBM m, normalization is the process of finding
the “smallest” DBM that represents the same octagon as m. Depending on which implicit
constraints are considered, we can obtain different normalization procedures.

1.4.1 Shortest-Path Closure
The most straight-forward normalization operation is called the shortest-path closure where
we make all pair-wise constraints explicit. We call a matrix m is shortest-path closed if we
have mij ≤mik + mkj for all i, j, k and mii = 0 for all i. Computing shortest-path closure is
equivalent to replacing each entry mij in a DBM m with the shortest distance from i to j in
the potential graph corresponding to m, and it can be easily achieved using the well-known
Floyd-Warshall algorithm. It runs in O(n3) time where n is the number of variables in the
environment.

1.4.2 Strong Closure
Although the shortest-path closure is simple to implement, it disregards the structural
constraints that V ′

2i and V ′
2i−1 are in fact the same variable with opposite signs, and hence

does not achieve the smallest possible DBM for a given octagon. By making such constraints
explicit in addition to the constraints considered in the shortest-path closure, we obtain the
strong closure. Formally, we call a DBM m strongly closed if it is shortest-path closed and
mij ≤ (mīi + mj̄j)/2 for all i, j where ī is the index of the negated version of V ′

i . In the
work of Miné [5], it was shown that we can compute the strong closure in O(n3) time by
modifying the Floyd-Warshall algorithm.

1.4.3 Tight Closure for Integral DBMs
While the strong-closure gives the tightest possible set of explicit constraints for a real-
valued DBMs, we can achieve an even tighter normalization for integer-valued DBMs by
incorporating integrality constraints as well. For example, suppose we had the constraint
V ′

1 − V ′
2 ≤ 3. Since V ′

1 − V ′
2 = 2V1 is an even number if V1 is an integral variable, we can

4 Implementation of an Octagon Abstract Interpreter for C Programs

tighten this constraint to derive V ′
1 − V ′

2 ≤ 2. Formally, a DBM m is tightly closed if it
is strongly closed and mīi is even for all i. The work of Miné [5] presents and algorithm
to compute the tight-closure of a DBM in O(n4) time, but it was later shown by Bagnara
et al. [3] that a simple modification to the strong closure algorithm can compute the tight
closure in O(n3) time if the coherence property (i.e., mij = mj̄,̄i for all i, j) is maintained
during updates.

1.5 Program Analysis with The Octagon Abstraction
The goal of an abstract interpreter is to prove (or disprove) some desired invariants, which
are some properties that always hold at some point of the program. When loops are involved
in the program, some program variables may take different values after the execution of the
same line of code in a loop when it is executed several times, but some properties may remain
valid whatever times the loop is executed or whatever user inputs the program receives.

An octagon abstract interpreter starts the analysis of a program with an octagon ab-
stracting all possible program states. This octagon is an invariant at the very beginning
of the program. Then, it tries to obtain an octagon at each point of the program (e.g.,
after each line of code) which is also an invariant at the point. This is done by translating
each program statement into an abstract transfer function operating in the abstract domain.
Finally, these octagons can be used to prove or signal possible invalidity of user-specified
invariants at any point of the program.

The most common components in imperative programming languages include assignment,
(conditional) branching and looping statements.

Abstract assignment: The expression on the right-hand side of an assignment statement
is analysed based on the constraints we have before the assignment. Then, the octagon is
updated with the new constraints derived from the expression. If the expression involves
more than two program variables, it has to be split into smaller sub-expressions, analysed
separately and merged together again because octagonal constraints involve at most two
variables.
Branching and merging (if-then-else): At the beginning of each branched code block,
new constraints are introduced by the branching condition(s). They are analysed and
decomposed into octagonal constraints and added into the octagon, this is called Backward
Boolean Expression Analysis. After the whole branching block ends, all branches merge
together, corresponding to computing the union of the octagons in the end of each branch.
The union of two octagons is the join of their closed (normalized) DBMs.
Widening and narrowing for loops: To analyse loops, we may need to loosen the
constraints to get to a fixed point and conclude loop invariants in a finite time. The
standard widening technique removes the constraints that are unstable after executing
one iteration of the loop block. However, as widening is an over-approximation, after
reaching to a stable point, we can try to refine it again to get back to a more precise
abstraction with the narrowing technique.

Contributions
The main contributions of this project are as follows:

OCaml implementation of octagon abstract domain for arbitrary precision integral
variables with associated transfer functions.
OCaml implementation of a static analyser for C programming language that supports a
restricted set of C statements.

J. Boillot, O. Desrentes, S.-Y. Lee and D. S. Marakkalage 5

2 Implementation Details

We implemented an abstract interpreter in the Octagon domain to analyse C programs. The
implementation in OCaml language can be found on GitHub1.

Due to the limited time and scale of this project, we constrained the type of program
variables to be always integers. Also, the structure and syntax of the input C program are
also limited to be of some simple forms.

2.1 Data Structure and Basic Operations
Octagons are represented with DBMs, which are arrays of arrays. The zarith package [2] is
used to deal with overflow problems as integers in C programs have a maximum representable
value (int_max = 232 − 1). We assume that the number of program variables is known in
the beginning of analysis so that the size of all DBMs throughout the analysis is the same.

Basic operations on DBMs are implemented as follows:
top: The greatest element ⊤ in the lattice of octagons is the DBM encoding no constraint
and containing all possible program states. It has infinity at every entry.
bottom: The smallest element ⊥ in the lattice of octagons is a result of contradictory
constraints and contains an empty set of program states. It is defined and handled
separately without a real matrix.
add_constraint: Add a new (octagonal) constraint to a DBM by finding the correspond-
ing entry and replacing it with the constant in the new constraint if the original value in
the matrix is larger.
is_in: Check if a concrete program state is contained in the octagon defined by a DBM
by checking if all constraints are satisfied.
is_inside: Check if the octagon defined by a DBM is included in the other octagon
defined by another DBM by checking if all entries in the first matrix are smaller than or
equal to the corresponding ones in the second matrix. This defines the inclusion relation
⊑ among DBMs.
meet: The meet operation ⊓ over two DBMs takes the larger value among the two
matrices for each entry separately.
join: The join operation ⊔ over two DBMs takes the smaller value among the two
matrices for each entry separately.
widening: The widening operation ▽ takes a DBM representing the state before the loop
and a DBM representing the state after executing one iteration. The standard widening
is implemented, which keeps the constraints as in the initial state if it is tighter after one
iteration and deletes all other constraints.
narrowing: The narrowing operation △ takes a DBM representing the state before the
loop and a DBM representing the state after executing one iteration. The standard
narrowing is implemented, which refines the constraints with the final state if it is not
constrained in the initial state and keeps all other constraints as in the initial state.

2.2 Closure Operations
We have implemented all three closure operations, shortest-path closure, strong closure, and
tight closure, for integer-valued DBMs. For tight closure, we have in fact implemented two

1 https://github.com/lee30sonia/OctagonAI

https://github.com/lee30sonia/OctagonAI

6 Implementation of an Octagon Abstract Interpreter for C Programs

algorithms, the one with O(n4) running time introduced by Miné [5] and the one with O(n3)
improved running time by Bagnara et al. [3].

1 (* Make ‘m’ coherent *)
2 for i = 0 to (2*n - 1) do
3 for j = 0 to (2*n - 1) do
4 m.(i).(j) <- Z.min m.(i).(j) m.(bar j).(bar i);
5 done;
6 done;
7
8 (* Compute shortest -path closure *)
9 for k = 0 to 2*n - 1 do

10 for i = 0 to 2*n - 1 do
11 for j = 0 to 2*n - 1 do
12 m.(i).(j) <- Z.min m.(i).(j) (m.(i).(k) #+ m.(k).(j));
13 (* Maintain coherence *)
14 m.(bar j).(bar i) <- m.(i).(j);
15 done;
16 done;
17 done;
18
19 (* Compute strong and tight closure *)
20 for i = 0 to 2*n - 1 do
21 for j = 0 to 2*n - 1 do
22 m.(i).(j) <- Z.min m.(i).(j)
23 ((m.(i).(bar i) #/ two) #+ (m.(bar j).(j) #/ two));
24 (* Maintain coherence *)
25 m.(bar j).(bar i) <- m.(i).(j);
26 done;
27 done;

Figure 1 Implementation of the optimized tight closure algorithm proposed by Bagnara et al.[3]

All four implementations use in-place updates as it is more memory and time efficient
and is shown to be correct. For the optimized version of the tight closure, we explicitly
make sure the coherence property is maintained both before and during the execution of the
algorithm as it is required for the correctness of the algorithm.

For reference, we include the tight closure algorithm in Figure 1. We use Zarith package’s
arbitrary precision integers as DBM entries, and the operator ‘#+’ is defined to be the addition
operator. Note that the symbol ‘two’ represents constant 2 and the division operator ‘#/’ in
Line 23 represents the integer division so that there is an implicit ‘floor’ operation. Lines
2-6 make sure that the coherence property is maintained prior to executing the rest of the
algorithm, and Lines 14 and 25 ensure the coherence property is maintained after each
update. We remark that the given algorithm uses zero-based indexing.

Additionally, it is not necessary to compute the closures from the beginning every time
we update a DBM. In fact, if we only update one (or a constant number of) constraint in
the DBM, we can recompute the tight closure in O(n2) using the incremental tight closure
algorithm presented by Miné [5], and we have also implemented this version.

J. Boillot, O. Desrentes, S.-Y. Lee and D. S. Marakkalage 7

2.3 Abstract Assignment
In this project, we restrict ourselves to assignments to integer variables where the assigned
quantity is an integer linear combination of the variables. Our implementation considers two
cases:
1. The assigned quantity is a general integer linear combination of variables.

In this case, we simply consider the variable-wise maximum and minimum values read
from the current DBM to derive the upper and lower bounds of the assigned quantity.
Then we update all constraints involving the assigned variable using these bounds.
However, this implementation may not get the best possible bounds in certain cases.
A better way to handle such assignments is to solve a linear program to figure-out
the best bound for each potential constraint, but this is too complicated and time
consuming.

2. The assigned quantity is of the form ax+by+c where x, y are two variables, a, b ∈ −1, 0, 1,
and c is an arbitrary constant.

For this kind of assignments, we can do better, and consider relational information
when establishing new upper and lower bounds for octagonal constraints.

2.4 Parsing C Programs
We use the FrontC parser [1] to parse the input C program to be analysed.

We only use a very simple subset of the Frontc parser. We chose to go through the syntax
tree and call the functions analysing the program on the fly.

We can analyse a program file corresponding to different function declarations (ana-
lyseFunctions and analyseFunction in the code). Those functions are made of a header
containing information on the variables (this is not supported yet as this part of the parser
is very intricate and complicated), and a body where the function is described. At the
beginning of the function’s body, we have the declarations of all the variables, building the
context of the function (collected analyseDefinitions). The second part of the function’s body
is the statement (analyseStatement), which describe parts of code like a sequence, a loop
or a computation. All of those statement contain expressions (analyseExpression), mostly
computations, which triggers most of the functions doing the analysis of the code.

2.5 Program Analysis
We first parse the C program to obtain the syntax tree, and then go over the syntax tree of
a function, computing the DBM at every point.

If the statement is an assignment, we use abstract assignment function to get the next
DBM.
For conditional if statements, we need to compute the DBMs at the beginning of then
block and else blocks. For this, we have to calculate the backward boolean analysis so
the condition is taken into account. This backward boolean analysis is represented as a
new DBM in which the conditions are added as constraints. Then, the analysis of all the
branches are executed on their own initial abstract memory states and the results are
joined so all the possibles ways are taken into account for the resulting state.
For while statements, we have to calculate all the possible input (abstract memory) states.
A first idea would be to execute on the input state the backward boolean analysis so
the condition of the loop is met and then the analysis of the inner body of the loop is
executed. We now have all the new possibles input states so we can add them to the
input state and we iterate so we reach a fixpoint. The problem happens if at every step,

8 Implementation of an Octagon Abstract Interpreter for C Programs

one abstract variable only increase by one so the recursion would be infinite. A solution
is to add the new states calculated at the end of the body of the loop to the input states
not by using a join but by using a widening operator. Its usage ensures the termination
of the analysis while the result is still sound. However, the resulting state can be refined a
bit by adding the usage of the narrowing operator instead of the widening after a fixpoint
is reached. This operator will keep the termination an the soundness while restricting
the output state.

At the end of every function the invariants found during its analysis are printed to the user.

3 Analysis Examples

In this section, we demonstrate how our octagon abstract interpreter analyses code with some
example C programs. The analysis of these examples can be run in our system following the
commands described in the README file.

3.1 Example 1
Our first example C program to analyse, shown in Figure 2, contains only assignments and
branching. There are three program variables, x, y and z, where x, y, assigned with user
inputs, are unconstrained. This simple program computes the absolute difference between x

and y, so the result z = |x−y| is expected to be non-negative. Though the invariant to verify
(in line 8) is not relational, an interpreter in the interval domain cannot prove it because the
branching condition is relational.

1 int x, y, z;
2 scanf("user input x: %d\n", &x);
3 scanf("user input y: %d\n", &y);
4 if (x >= y)
5 z = x - y;
6 else
7 z = y - x;
8 assert (z >= 0);

Figure 2 Example program 1.

From the beginning of analysis until line 3, the octagon is the top element with no
constraint. Then, when entering the if block (line 4), we have an additional constraint
x ≥ y, or in the octagonal form y − x ≤ 0. After executing the assignment in line 5, we
have z ≤ x− y and z ≥ x− y ⇒ −z ≤ y − x ≤ 0⇒ z ≥ 0. On the other hand, in the else
block, we have x < y or x− y ≤ −1. Similarly, after executing line 7, we get z ≤ y − x and
z ≥ y − x ⇒ −z ≤ x− y ≤ −1 ⇒ z ≥ 1. In the end, taking the union of z ≥ 0 and z ≥ 1,
the analyser concludes that z ≥ 0 is indeed true.

3.2 Example 2
The second example, shown in Figure 3, demonstrates how the abstract domain in combination
with the widening and narrowing operators are used to prove loop invariants. Again, an
interval interpreter will not be able to prove the assertions because the important loop
invariant x + y = 10 is relational.

J. Boillot, O. Desrentes, S.-Y. Lee and D. S. Marakkalage 9

1 int x, y;
2 x = 10;
3 y = 0;
4 while (x > y)
5 {
6 x = x - 1;
7 y = y + 1;
8 }
9 assert (x + y == 10);

10 assert (x <= 5);
11 assert (y >= 5);

Figure 3 Example program 2.

4 Experimental Results

In this section, we present some experimental results.

4.1 Performance of Closure Operations

The running times of different closure algorithms are measured and presented in Table 1.
The experiments were run for different DBMs where the number of environment variables
(n) are 25, 50, 100, and 200. The running times are measured on a 3.1GHz Dual-Core Intel
Core i5 CPU with 16GB 2133MHz DDR3 RAM memory. The first row presents the timing
results for the standard Floyd-Warshall shortest-path closure algorithm. The second and
third rows respectively give the results for the strong-closure algorithm and the tight-closure
algorithm proposed in [5]. The last row shows the results for the optimized tight-closure
algorithm presented in [3].

Table 1 Running time of different closure algorithms

n = 25 n = 50 n = 100 n = 200

Shortest Path Closure 0.002 s 0.014 s 0.097 s 0.799 s
Strong Closure 0.005 s 0.040 s 0.296 s 2.520 s
Tight Closure 0.538 s 7.942 s 132.238 s > 1000 s
Tight Closure Optimized 0.003 s 0.024 s 0.186 s 1.344 s

Note that the optimized version of tight closure is in-fact more efficient than the strong
closure algorithm proposed in [5]. This is because the strong closure algorithm we implemented
is the one presented in [5], and it does strengthening passes (i.e., updates of the form
mij = min(mij , (mīi + mj̄,j)/2) for all i, j) inside the outer for-loop of the traditional
Floyd-Warshall algorithm. In contrast, Bagnara et al. [3] showed that the strengthening
passes can be moved out of the outer for-loop.

4.2 Program Analysis

Figure 4 shows an example execution of the static analyser for the example C programs seen
above and the invariants it is able to derive.

10 Implementation of an Octagon Abstract Interpreter for C Programs

Figure 4 A screenshot of program analysis.

5 Future Work

In this section, we propose some potential improvements we can make to our implementation.
1. Supporting a bigger part of the C language.

For example, we don’t support at this moment calling functions. Moreover, the
arguments of the functions are not taken into account. We could also add the analysis
of the returned value by adding a new phantom variable that represents this result.
At this point, the analysis of pointers is not supported since it needs two different
abstract domains. Finally, some statements such as do ... while are not supported but
they only are rewrites of supported statements so it would be easy (but still long) to
implement their analysis.

2. Allow different types of integer variables with overflow analysis.
Currently, we allow all integral variables but we do not handle overflow scenarios. For
example, suppose we had a unsigned int variable x with constraint 0 ≤ x ≤ 231 − 1,
and we have the assignment x← x+1. Then, in the current implementation, we update
the bound to be 1 ≤ x ≤ 231, whereas the correct bound should be −231 ≤ x ≤ 231− 1,
and this is an important future improvement. Since different types of integral variables
(i.e., char, short, int, long etc.) have different maximum values, we need a fine
grained overflow analysis to support those types. One solution would be to expand
the support of every variable to the infinite when one of it’s bound is to the infinite at
one step and raising a warning to the user.

3. Better handling of assignments.
The present implementation does not handle the assignments of general linear combin-
ations in the most precise manner as it only uses variable-wise upper/lower bounds.
This could be improved to have better upper/lower bounds using relational information
as well. One solution would be to decompose the expressions into multiple supported
ones using phantom variables. However, it requires a first analysis of the program to
know how many phantom variables are required.

J. Boillot, O. Desrentes, S.-Y. Lee and D. S. Marakkalage 11

6 Conclusions

In conclusion, we have experimented how the octagon domain works on a restriction of
the C language, some algorithms that are involved and we have seen its interest compared
to non-relational abstract domains such as the intervals. This analyser is still simple but
remains a first step toward a more exhaustive one.

References
1 FrontC. URL: https://opam.ocaml.org/packages/FrontC/.
2 Zarith. URL: https://opam.ocaml.org/packages/zarith/.
3 Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. An improved tight closure algorithm

for integer octagonal constraints. In Francesco Logozzo, Doron A. Peled, and Lenore D.
Zuck, editors, Verification, Model Checking, and Abstract Interpretation, pages 8–21, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

4 Patrick Cousot et al. Static determination of dynamic properties of programs. 1977.
5 Antoine Miné. The octagon abstract domain. Higher-order and symbolic computation, 19(1):31–

100, 2006.

https://opam.ocaml.org/packages/FrontC/
https://opam.ocaml.org/packages/zarith/

	1 Introduction
	1.1 Software Verification
	1.2 Abstract Interpretation
	1.3 The Octagon Domain
	1.4 Normalization of DBMs
	1.4.1 Shortest-Path Closure
	1.4.2 Strong Closure
	1.4.3 Tight Closure for Integral DBMs

	1.5 Program Analysis with The Octagon Abstraction

	2 Implementation Details
	2.1 Data Structure and Basic Operations
	2.2 Closure Operations
	2.3 Abstract Assignment
	2.4 Parsing C Programs
	2.5 Program Analysis

	3 Analysis Examples
	3.1 Example 1
	3.2 Example 2

	4 Experimental Results
	4.1 Performance of Closure Operations
	4.2 Program Analysis

	5 Future Work
	6 Conclusions

